4α,15-DIHYDROENCELIN AND RELATED SESQUITERPENE ACIDS FROM PERYMENIUM FEATHERSTONEI

FERDINAND BOHLMANN, CHRISTA ZDERO, ROBERT M. KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; *Smithsonian Institution, Department of Botany, Washington, DC 20560, U.S.A.

(Revised received 4 November 1983)

Key Word Index—Perymenium featherstonei; Compositae; sesquiterpenes; eudesmanolide; eudesmanoic acids.

Abstract—Perymenium featherstonei afforded, in addition to the known ent-kaurene derivative 4\alpha,15-dihydroencelin, two closely related epimeric acids.

INTRODUCTION

So far only one species of the South and Central American genus *Perymenium* has been studied chemically [1]. As only *ent*-kaurene derivatives were isolated a further species, *P. featherstonei* Blake, collected in Peru, was investigated to see whether chemotaxonomic relationships to other genera of the subtribe Ecliptinae [2] exist. The results will be discussed in this paper.

RESULTS AND DISCUSSION

The aerial parts of Perymenium featherstonei Blake afforded germacrene D, ent-kaurenic acid, its 15α -angeloyloxy derivative, ent-kauren-19-ol, 8-desoxy-

salonitenolide [3], two epimeric keto acids, the eudesmane derivatives 1a and 2a, as well as the eudesmanolide 3. The structure of the latter followed from the molecular formula $(C_{15}H_{18}O_3)$ and the 1H NMR spectrum (Table 1). Spin decoupling allowed the assignment of all signals though the signals of H-6 and H-9 were overlapped in deuteriochloroform. Addition of deuteriobenzene shifted the signal of H-6 β less than those of H-6 α and H-9 β . Therefore all sequences and couplings could be assigned. The configuration at C-4 followed from the coupling $J_{4,5}$. The couplings of H-8 showed that a cisfused 8,12-lactone was present with the same conformation as alantolactone and related eudesmanolides. The position of the keto group and of the cis-double bond directly followed from the 1H NMR spectrum. All data

Table 1. ¹H NMR spectral data of compounds 1-3 (400 MHz, CDCl₃, TMS as internal standard)

	1a	2a	1b	2b	1b	2b	3	
					CDCl ₃ -C ₆ D ₆			CDCl ₃ -C ₆ D ₆
H-1	6.80 d	6.73 d	6.78 d	6.72 d	6.54 d	6.40 d	6.76 d	6.34 d
H-2	5.89 d	5.87 d	5.87 d	5.85 d	5.81 d	5.75 d	5.89 d	5.71 d
H-4	2.46 dq	2.27 dq	2.45 dq	2.26 dq	2.34 dq	2.06 dq	2.49 dq	2.25 dq
H-5	2.15 ddd	1.72 ddd	2.15 ddd	1.71 ddd	1.95 ddd	1.49 ddd	2.08 ddd	1.63 ddd
Η-6α	1.56 br d	1.8 m	1.51 br d	1.79 br d	1.36 br d	1.62 br d	1.67 m	1.20 m
Η-6β	1.63 ddd	1.33 ddd	1.62 ddd	1.31 ddd	1.59 ddd	1.10 ddd		1.36 ddd
H-7	2.60 dddd	2.51 ddddd	2.60 ddddd	2.52 ddddd	2.50 ddddd	2.37 ddddd	3.07 ddddd	2.52 ddddd
Η-8α	1.78 br d	1.8 m	1.74 br d	1.73 br d	1.63 br d	1.56 br d	4.58 ddd	} 4.11 ddd
H-8β	1.6 m		1.61 m	1.58 dddd	1.59 dddd	1.39 dddd		
Η-9α	1.51 ddd	1.6 m	1.48 ddd	1.50 ddd	} 1.36 m	1.39 ddd	2.26 dd	1.88 dd
H-9 <i>B</i>	1.6 m		1.58 m	1.67 m		1.24 m	1.65 dd	1.20 m
H-13	6.36 s	6.36 s	6.19 d	6.18 d	6.13 d	6.07 d	6.20 d	6.01 d
H-13'	5.73 s	5.71 s	5.60 dd	5.58 dd	5.44 dd	5.36 dd	5.65 d	5.29 d
H-14	1.20 s	1.11 s	1.19 s	1.10 s	1.02 s	0.86 s	1.25 s	0.97 s
H-15	1.13 d	1.12 d	1.19 d	1.11 d	1.03 d	1.01 d	1.12 d	0.90 d
OMe			3.77 s	3.77 s	3.63 s	3.55 s	_	

J (Hz): Compounds 1a/1b and 2a/2b: 1, 2 = 10; 5, $6\alpha = 3$; 5, $6\beta = 12$; 6α , $6\beta = 13$; 6α , 7 = 4; 6β , 7 = 12; 7, $8\alpha \sim 3$; 7, $8\beta = 12$; 8α , $8\beta = 13$; 7, 13' = 1; 8α , $9\alpha \sim 3$; 8α , $9\beta \sim 3$; 8β , $9\alpha \sim 10$; 8β , $9\beta \sim 5$; 9α , $9\beta = 13$; 13, 13' = 1; compounds 1a/1b; 4, 5 = 6; 4, 15 = 8; compounds 2a/2b: 4, 5 = 12.5; 4, 15 = 7; compound 3: 1, 2 = 13; 4, 5 = 6; 4, 15 = 8; 5, $6\alpha = 2.5$; 5, $6\beta = 13$; 6α , $6\beta = 13$; 6α , $6\beta = 13$; 6α , 6β , 6β , 6β , 6β , 7 = 11.5; 7, 8 = 5; 7, 8 = 5; 7, 8 = 5; 8, 8, $9\alpha = 5$; 8, $9\alpha = 5$; 8, $9\beta = 1.5$; 9α , $9\beta = 15$.

1a R = H, 4α H 1b R = Me, 4α H 2a R = H, 4β H 2b R = Me, 4β H

therefore only agree with the structure of $4\alpha,15$ -dihydroencelin (3).

The structures of the acids 1a and 2a, which were transformed to the corresponding methyl esters 1b and 2b, also followed from the molecular formulae and the 1H NMR spectral data (Table 1). All signals in the 1H NMR spectra of 1b could be assigned by spin decoupling starting with the five fold doublet at $\delta 2.60$, clearly the signal of H-7 which followed from decoupling of the H-13' signal and of four other signals. The stereochemistry at C-4 again could be deduced from the corresponding coupling $J_{4, 5}$ and that at C-7 was deduced from the presence of two large couplings ($J_{6\beta, 7\alpha}$ and $J_{7\alpha, 8\beta}$).

The ¹H NMR spectral data of **2b** differed only slightly from those of **1b**. A clear difference, however, was detectable between the chemical shifts of some protons. The coupling $J_{4,5}$ in the spectrum of **2b** required a transdiaxial orientation of the protons at C-4 and C-5 thus indicating that **1a** and **2a** most likely were C-4 epimers which could be established by complete epimerization of **1a** to **2a**. The observed shift differences in the spectra of **1b** and **2b** probably required different conformations of the cyclohexenone ring in both epimers. Most likely **1b** adopts a boat-conformation to avoid a 1,3-diaxial orientation of the methyl groups at C-4 and C-10, while for **2b** a normal half chair conformation can be assumed.

The co-occurrence of 1a and 3 may be an indication that 8,12-cis-eudesmanolides may be formed via the corresponding eudesmanoic acids rather than from 8,12-cis-germacranolides which seem to be rare.

The roots afforded the widespread trideca-3,5,7,9,11-pentayn-1-ene, germacrene D, ent-kaurenic acid, its 15α -angeloyloxy and isobutyryloxy derivatives and ent-kaurenol.

The isolation of the eudesmanolide 3 from a Perymenium species supports the placement of this genus in the Ecliptinae where eudesmanolides and ent-kaurenic acid derivatives are common (Aspilia [4], Baltimora [5],

Dimerostemma [6], Encelia [7-9], Steiractinia [4], Wedelia [10], Zexmenia [11], Zinnia [12]). From a few genera costic acid derivatives were reported which may replace the eudesmanolides [13-15]. However, several other types of natural product are present in this somewhat diverse subtribe.

EXPERIMENTAL

The air dried plant material (voucher RMK 9025) was extracted with Et₂O-petrol, 1:2, and the resulting extracts were evaporated under vacuum. The extract of the aerial parts (300 g) gave CC fractions (silica gel) as follows: 1 (100 ml, petrol), 2 (200 ml, Et₂O-petrol, 1:10 and 1:3), 3 (100 ml, Et₂O-petrol, 1:1), 4 (200 ml, Et₂O and Et₂O-MeOH, 10:1). TLC (silica gel, PF 254, petrol) of fraction 1 gave 5 mg germacrene D (R_f 0.60; detection always by UV-light and KMnO₄ spray). TLC of 2 (Et₂O-petrol, 1:10) afforded 1 g ent-kaurenic acid (R_f 0.45), TLC of 3 (Et₂O-petrol, 1:1) gave 50 mg 15α-angeloyloxy-ent-kaurenic acid $(R_f, 0.63)$ and 100 mg ent-kauren-19-ol $(R_f, 0.38)$. Fraction 4 on repeated TLC (Et₂O-petrol, 3:1) afforded 10 mg 2a (R_f 0.65), 20 mg 1a $(R_c \ 0.61)$ and a mixture of more polar compounds, which after TLC (C_6H_6 -Et₂O-CH₂Cl₂, 1:1:1) gave 3 mg 3 (R_6 0.63) and ca 2 mg crude 8-desoxysalonitenolide which was purified by HPLC (RP 8, MeOH-H₂O 13:7, R, 6:1 min.).

The extract of the roots (100 g) gave fractions as follows: 1 (50 ml, petrol), 2 (100 ml, $\rm Et_2O$ -petrol, 1:10 and 1:3), 3 (100 ml, $\rm Et_2O$ -petrol, 1:1) and 4 (100 ml $\rm Et_2O$ and $\rm Et_2O$ -MeOH, 10:1). TLC (silica gel PF 254) of fraction 1 (petrol) gave 5 mg germacrene D and ca 0.5 mg tridecapentayn-1-ene (estimated by UV-extinction). TLC of 2 ($\rm Et_2O$ -petrol, 1:10) gave 0.5 g ent-kaurenic acid (R_f 0.48), and TLC of 3 ($\rm Et_2O$ -petrol, 1:1) afforded 20 mg 15 α -angelolyloxy- and 20 mg 15 α -isobutyryloxy-ent-kaurenic acid (R_f 0.60) while fraction 4 gave no definite compounds. Known compounds were identified by comparing their 400 MHz ¹H NMR spectra with those of authentic material. Quantities were estimated by weight.

3-Oxo-1,2-dehydro-4α,15-dihydro costic acid (1a). Colourless oil; MS m/z (rel. int.): 248.141 [M]⁺ (44) (C₁₅H₂₀O₃), 233 [M - Me]⁺ (8), 230 [M - H₂O]⁺ (16), 202 [230 - CO]⁺ (14), 95 [C₇H₁₁]⁺ (90), 67 [C₅H₇]⁺ (100). Addition of CH₂N₂ in Et₂O afforded the methyl ester 1b (TLC, Et₂O-petrol, 1:3 R_f 0.48), colourless oil, bp_{0.1} 125° (bath temp. short way dest.); IR $v_{\rm C}^{\rm CLL}$ cm⁻¹: 1720 (C=CCO₂R), 1675, 1620 (C=CC=O); MS m/z (rel. int.): 262.157 [M]⁺ (100) (C₁₆H₂₂O₃), 247 [M - Me]⁺ (12), 230 [M - MeOH]⁺ (44), 215 [230 - Me]⁺ (34), 202 [230 - CO]⁺ (56), 95 (79), 91 (89), 67 (100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-25} \frac{578}{-26} \frac{546}{-36} \frac{436 \text{ nm}}{-152} \text{CHCl}_3; c 1.34$$

To 10 mg 1a in 1 ml tert.-butanol 5 mg potassium-tertbutylate was added. After 1 h, usual work-up afforded 2a, identical with the natural acid, while nothing of the epimer was detectable.

3-Oxo-1,2-dehydro-4β,15-dihydro costic acid (2a). Colourless oil; MS m/z (rel. int.): 248.141 [M]⁺ (36) (C₁₅H₂₀O₃), 233 [M - Me]⁺ (8), 230 [M - H₂O]⁺ (9), 202 [230 - CO]⁺ (14), 95 (50), 67 (58), 61 (100). Addition of CH₂N₂ in Et₂O gave the methyl ester 2b (TLC, Et₂O-petrol, 1:3: R_f 0.45), colourless oil, bp_{0.1} 125° (bath temp., short way dest.); IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 1720 (C=CCO₂R), 1675, 1620 (C=CC=O); MS m/z (rel. int.): 262.157 [M]⁺ (61) (C₁₆H₂₂O₃), 247 [M - Me]⁺ (8), 230 [M - MeOH]⁺ (41), 215 [230 - Me]⁺ (16), 202 [230 - CO]⁺ (31), 95 (77), 91 (78), 67 (100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-50} \quad \frac{578}{-52} \quad \frac{546}{-61} \quad \frac{436 \text{ nm}}{-130} \text{CHCl}_3; c \ 0.63$$

 4α ,15-Dihydroencelin (3). Colourless crystals, mp 175° (Et₂O); IR $v_{\rm max}^{\rm CCl_4}$ cm⁻¹: 1760 (γ-lactone), 1670 (C=CC=O); MS m/z (rel. int.): 246.126 [M]⁺ (21) (C₁₅H₁₈O₃), 231 [M – Me]⁺ (3), 218 [M – CO]⁺ (3), 97 (71), 95 (79), 69 (100), 55 (98).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+14} \quad \frac{578}{+14} \quad \frac{546}{+20} \quad \frac{436 \text{ nm}}{+53} \text{ CHCl}_3; c \ 0.1$$

Acknowledgements—We thank the Fonds der Chemie and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1. Bohlmann, F., Zdero, C. (1977) Phytochemistry 16, 786.
- 2. Robinson, H. (1981) Smithsonian Contributions to Botany 51, 1.
- Czerson, H., Bohlmann, F., Stuessy, T. F. and Fischer, N. H. (1979) Phytochemistry 18, 257.
- Bohlmann, F., Jakupovic, J., Ates (Gören), N., Schuster, A., Pickardt, J., King, R. M. and Robinson, H. (1983) *Liebigs Ann. Chem.* 962.

- 5. Herz, W. and Kumar, N. (1979) Phytochemistry 18, 1743.
- Bohlmann, F., Dhar, A. K., Jakupovic, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 838.
- 7. Sims, J. J. and Bergmann, K. A. (1972) Phytochemistry 11,
- Bjeldanes, L. F. and Geissman, T. A. (1971) Phytochemistry 10, 1079.
- Geissman, T. A. and Mukherjee, R. (1968) J. Org. Chem. 33, 656.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 2329.
- 11. Bohlmann, F. and Lonitz, M. (1980) Chem. Ber. 113, 2410.
- Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H. (1981) Phytochemistry 20, 1623.
- Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 1189
- Guerreiro, E., Kavka, J., Giodarno, O. and Gros, E. G. (1979) *Phytochemistry* 18, 1235.
- Rodriguez, E., Saunders, B., Grieco, P., Majetick, G. and Oguri, T. (1979) Phytochemistry 18, 1641.

Phytochemistry, Vol. 23, No. 5, pp. 1187-1188, 1984. Printed in Great Britain.

0031-9422/84 \$3.00+0.00 Pergamon Press Ltd.

2-ACETOXY-3α,4α-EPOXY-3,4-DIHYDROKAUNIOLIDE FROM GROSVENORIA COELOCAULIS

FERDINAND BOHLMANN, CHRISTA ZDERO, ROBERT M. KING* and HAROLD ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany; *Smithsonian Institution, Department of Botany, Washington, DC 20560, U.S.A.

(Revised received 4 November 1983)

Key Word Index-Grosvenoria coelocaulis; Compositae; sesquiterpene lactones; guaianolides.

Abstract—The aerial parts of *Grosvenoria coelocaulis* gave the known guaianolides dehydroleucodin, desacetoxymatricarin, kauniolide and a new one, 2β -acetoxy- 3α , 4α -epoxy-3,4-dihydrokauniolide.

Grosvenoria (Compositae, tribe Eupatorieae) is a small genus [1] ranging from central Ecuador into northern Peru, which is placed in the subtribe Critoniinae [2]. So far nothing is known on the chemistry of this genus. We have now investigated Grosvenoria coelocaulis (B. L. Robins.) K. et R. from northern Peru. The aerial parts afforded α -curcumene and α -zingiberene as well as the known guaianolides kauniolide (1) [3], dehydroleucodin [4], desacetoxymatricarin [5] together with a new one, C₁₇H₂₀O₅. The IR spectrum of the latter indicated the presence of a y-lactone and an acetate group (1770, 1738, 1245 cm⁻¹). From the ¹H NMR spectrum (Table 1) the presence of 6\alpha,12-methylene lactone could be deduced. A typical fourfold doublet at $\delta 2.80$ was due to the H-7 signal. Accordingly, its irradiation collapsed the H-13 doublets to singlets, the double doublet at δ 3.63 to a doublet and changed the overlapped multiplet around

2.10 while a quartet at 1.33 collapsed to a triplet. Addition of deuteriobenzene allowed the assignment of all signals by spin decoupling. As H-2 showed a W-coupling with H-5 and an allylic coupling with H-14 the whole sequence leading to the structure 2 could be assigned. The chemical shifts of H-2 and H-3 in combination with the other data indicated a 2-acetoxy derivative of kauniolide where the 3,4-double bond was transformed to an epoxide. Inspection of a model showed that the small coupling $J_{2,3}$ required a trans-orientation of H-2 and H-3, while the chemical shift of H-15 obviously was influenced by the deshielding effect of the lactone oxygen at C-6. This, however, required a 4β -methyl group as the stereochemistry at C-5-C-7 clearly followed from the trans-diaxial couplings of H-5-H-7. Also the observed couplings of H-8 and H-9 nicely agreed with the angles which could be deduced from a model. Thus the new compound is 2β -